
HQ EOI API Gateway

Overview
Api gateway is to allow utilization within HQ by HQ internal needs or vendors to receive real
time. It utilizes the typical vendor tokenization for external vendors and internal tokenization for
internal use.

The API call to API gateway is an EOI order that carries subtype. The subtype is looked up
within HQ definitions and expanded into dataset request and sent to store. EOI connector then
executes a data collection for each dataset and sends back all datasets. Parametrization for
OPENDATE will be supported.

API URLs

URL and conventions for calling API gateway (same as EOI)

PROD: https://www.pixelpointhq.com/api/v1/eoi

QA: https://qa.pixelpointhq.com/api/v1/eoi

CI: https://ci.pixelpointhq.com/api/v1/eoi

Method: POST
Content-Type: "application/xml"

Sample request and transformation

Sample of XML sent for example by vendor:

<?xml version="1.0"?>
<Request>
 <RequestType>REALTIME_DATA</RequestType>
 <RequestSubType>SALES_101</RequestSubType>
 <DataParameters OPENDATE="20220110" />

 <EOITransfer>
 <EOIAuthenticationToken>Vendor+Store</EOIAuthenticationToken>
 </EOITransfer>
</Request>

Such a request is then transformed by HQ based on stored definitions into for example:

<?xml version="1.0"?>
<Request>
 <RequestType>REALTIME_DATA</RequestType>
 <RequestSubType>SALES_101</RequestSubType>
 <DataParameters OPENDATE="20220110" />
 <EOITransfer>
 <EOIAuthenticationToken>Vendor+Store</EOIAuthenticationToken>
 </EOITransfer>
 <DataSets>
 <DataSet>
 select UseVat, now() as StoreLocalDateTime from sysinfo
 </DataSet>
 <DataSet>
 select count(*) as TransactionCount , sum(NetTotal) as NetTotal_sum ,
 sum(FinalTotal) as FinalTotal_sum
 from posheader
 where posheader.opendate = :OPENDATE
 </DataSet>
 </DataSets>
</Request>

For the transformation it will need to use a table in core DB.

Primary key can be the value corresponding to <RequestData>
There should be a column for IsActive. Only active records should take effect.
There should be provision for 9 SQL Blobs. There should be a column for internal description
and external one.. (to be given out .. upon request catalog call)
An automated Hash of 9 SQL BLOBs would be nice.. To allow comparison of records between
environments.

Much later on we will add a promotion flag to each record.

It might be nice to only load each definition once to memory from DB… and use then form
stored memory data. Total size of all SQLs is expected to be under 1KB per record on average.

Assuming that we end up using the “API gateway” for many purposes, I would expect it be less
than 50 records within a year and 100-200 solves a lot of our needs.

Parametrization: OPENDATE

For current OPENDATE, date can be passed in yyyymmdd format or can use the key word:
CURRENT or MAX which will use date from last (=max) UID in DAYINFO table.
List of features not supported by EOI gateway (compared to EOI orders processed by POS):

The use of RequestUID for “repeatability” is implemented at this time.

Parameter case has to be same case in SQL and parameter provided in <DataParameters>
node.

ERRORs

Example of how a failure might be express in response XML

If request contain multiple datasets, some might produce “OK” but some might have errors… an
error/pass is per dataset

Filed names in Result

The field names in query need to be defined.
Don’t use for example: SUM(X)
Instead use named result: SUM(X) as SUM_X

Example of correct use:

OUTPUT

Sample request and to such request:

EOI connector

To use the feature you must run EOI connector at minimum version of: 1.3.1.231

Such EOI orders have an extra line in console logging:

It is a sample of getting some basic sales for a given day and day a week prior (to compare …)
There is also a 2nd dataset in the sample, that is for getting what time is/was at the local store.

